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Аннотация: Проведена высокотемпературная щелочная активация угле-

родного материала в инертной среде, его компактирование с использованием раз-
личных связующих материалов – поливинилового спирта, поливинилацетата  
и базальтового волокна. Исследованы физико-структурные характеристики ком-
пактированного активированного углеродного материала полученных ранее экс-
периментальных образцов, а именно удельная поверхность и пористость (общий 
объем пор и их размер) методом БЭТ и однородность распределения компонентов 
экспериментальных образцов методом синхронного термического анализа  
(ТГ- и ДСК-анализом). Представлены результаты исследований. Установлены 
неравномерность распределения и нелинейное влияние связующих компонентов 
на физико-структурные характеристики исследованных компактированных акти-
вированных углеродных материалов по их объему. 

 
 

 
Введение 

 

Определение физико-структурных характеристик – одно из приоритетных 
направлений при разработке новых многофункциональных материалов, поскольку 
лишь их знание позволяет реализовать весь имеющийся потенциал данных мате-
риалов в полном объеме. К таким материалам принято относить активированные 
углеродные материалы, обработка которых различными активаторами (из кото-
рых наиболее часто используют кислоты, щелочи, водяной пар, их комбинации  
и т.д.) радикально меняет целый ряд ключевых и востребованных характери-
стик [1 – 4]. К ним можно отнести удельную поверхность, объем пор и их размер  
и другие, то есть характеристики, наиболее востребованные в химической и неф-
тегазовой отраслях, медицине, радиоэлектронике, сельском хозяйстве, энергетике 
и пр. [5]. 

При этом, как отмечают многие авторы, одним из наиболее эффективных  
и доступных вариантов получения активированных углеродных материалов являет-
ся высокотемпературная щелочная активация специально подготовленного угле-
родного сырья – углеродных наноматериалов, фенолформальдегидной смолы, при-
родных углей, декстрина, древесных отходов, графена, в инертной среде [6 – 10]. 
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Однако на практике наиболее часто проводится характеризация лишь от-
дельных свойств функциональных материалов или режимных параметров их по-
лучения, влияющих на характеристики данных материалов, причем результаты 
исследований различных авторов, как правило, не увязываются с другими.  
Присутствует слабая привязка к промышленному производству и условиям ре-
ального применения. Например, многими авторами проводились исследования, 
направленные на определение наиболее рациональной температуры процесса ак-
тивации, – при температуре 300…500 °С [11]; 600…800 °С [12], 700…900 °С [13], 
750 °С [14, 15], 800…900 °С [16 – 19]. 

Продолжительность процесса активации (от 1,5 до 3 ч) рассматривалась  
в работах [6, 20, 21], причем были установлены наиболее эффективные режим-
ные параметры для определенного типа исходного сырья и его соотношения  
с активатором. 

Авторы целого ряда работ [21 – 24] анализировали рациональность исполь-
зования различных активирующих компонентов (NaOH, KOH, KНСО3 и K2СО3) 
для получения наиболее высокой удельной поверхности и пористости углеродно-
го материала, а также влияние различных инертных газов (He, Ar и N2) на процесс 
активации, отмечая при этом рациональность использования в данном процессе 
именно KОН и N2. 

В исследованиях [25 – 28] установлен положительный эффект от одновре-
менного применения нескольких активаторов (например KОН + H2O) при проте-
кании процесса активации. В результате выявлена возможность снижения темпе-
ратуры процесса активации без ухудшения характеристик активируемого угле-
родного материала, что является важным режимным параметром при возможной 
практической реализации данного процесса.  

В условиях реального применения, активированные углеродные материалы 
используются в различной форме: в виде порошка, гранул, волокон, для поглоще-
ния, разделения или очистки, а также в качестве носителей катализаторов и ле-
карственных средств, топливных ячеек и т.д. Однако при этом к ним дополни-
тельно предъявляются высокие требования по возможности формования и свя-
зующим – для удобства дальнейшего использования в готовых изделиях и повы-
шения их сорбционных характеристик [3, 5, 29 – 34]. 

Так, одной из актуальных прикладных задач является всестороннее исследо-
вание влияния связующего компонента, используемого для получения компакти-
рованных образцов, на итоговые характеристики компактированного активиро-
ванного углеродного материала. При этом обычно делается ряд допущений, со-
гласно которым: 

– связующий компонент равномерно распределяется по объему основного 
(углеродного) материала; 

– физико-структурные характеристики исследуемого компактированного об-
разца (блочка, черенка или гранулы) одинаковы в любой его точке. 

Комплексное направление исследований физико-структурных свойств, явля-
ясь по сути малоизученным, представляется весьма интересным и перспективным 
как с практической точки зрения (возможность промышленной реализации про-
цесса), так и с точки зрения фундаментальных исследований. Актуальность по-
добных работ и поставленных вопросов, по мнению автора, предполагает прове-
дение нескольких связанных, но независимых направлений исследований. 

Цель работы – исследование распределения связующего компонента и его 
влияние на физико-структурные характеристики компактированного активиро-
ванного углеродного материала. 
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Объекты и методы исследования 
 

Проведенные экспериментальные исследования состояли из двух этапов, 
включающих несколько стадий. 

1. Методика получения экспериментальных образцов активированного  
и компактированного углеродных материалов. На данном этапе осуществлялась 
подготовка исследуемых образцов на следующих стадиях: 

– высокотемпературная активация углеродного материала, проводящаяся 
при температуре 400…750 °С в течение 120 мин (основная стадия) в инертной 
среде (активируемая реакционная смесь – карбонизат на основе декстрина и гид-
роксида калия в соотношении 1 : 3) [6, 28]; 

– компактирование активированного углеродного материала со связующим 
компонентом, заключающееся в получении формованных образцов в виде блоч-
ков с применением связующих: поливинилового спирта (ПВС) ГОСТ 10779–78, 
поливинилацетата (ПВА) ТУ 2242-011-39778023–2015, базальтового волокна (БВ) 
ТУ 5952-036-05328981–2006 в количестве 20 %, и предполагающее ступенчатый 
нагрев при температуре 75…190 °С, прессование при давлении 1,5…7,5 кН и вы-
держку в течение 3…210 мин с последующим охлаждением и сушкой [33, 35].  

Связующие компоненты вносились в активированный углеродный материал 
(в виде раствора для ПВА и ПВС, волокна размером (3…6 ± 1,5) мм, диаметром 
(9 ± 1,5) мкм для БВ) и перемешивались в механическом диспергаторе до одно-
родного состава.  

Выбор количества связующего и режимных параметров прессования продик-
тован получением устойчивых от разрушения образцов и возможностью после-
дующего корректного сравнения результатов, а самих связующих – их инертно-
стью, доступностью и слабой активностью по отношению к активированному уг-
леродному материалу (то есть при использовании данных связующих пористая 
структура активированного углеродного материала остается максимально доступ-
ной). При этом получены блочки массой 17…18, 26…27 и 31…32 г со связующи-
ми ПВС, БВ и ПВА соответственно. Различие в массе образцов обусловлено тех-
нологией их получения [32]; 

– подготовка экспериментальных образцов, включающая разрезание полу-
ченных на предыдущей стадии блочков и отбор проб согласно схеме, показанной 
на рис. 1. Выбор места отбора проб (точки Т1 – Т4) продиктован желанием про-
следить возможное изменение физико-структурных характеристик компактиро-
ванного активированного углеродного материала по всему объему полученного 
блочка и однородность его состава. В свою очередь каждой из точек (Т1 – Т4) 
соответствовало усредненное значение по результатам анализа нескольких блоч-
ков (в работе анализировались партии по 4 блочка с каждым из связующих ком-
понентов). В результате получены следующие экспериментальные образцы: 

–  точки Т1 и Т2 – пробы из внутреннего объема блочка; 
– точки Т3 и Т4 – пробы с внешней поверх-

ности блочка, цилиндрической и торцевой соот-
ветственно. 

2. Диагностика экспериментальных образ-
цов. Данный этап исследований включал две  
стадии: 

– определение физико-структурных харак-
теристик – пористости (общего объема пор и их 
размера) и удельной поверхности, с помощью 
аналитического комплекса Altamira Instruments 
Top 200 (США) по типовой методике с использо-
ванием метода анализа по БЭТ; 

Рис. 1. Схема отбора проб  
из экспериментальных образцов 

Т1Т2Т3 

Т4
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– определение состава экспериментальных образцов и однородности рас-
пределения входящих в них компонентов – с помощью синхронного термического 
анализа на дериватографе STA 449 F3 Jupiter (NETZSCH Feinmahltechnik, GmbH, 
Selb, Германия) по типовой методике (скорость нагрева 10 °С/мин, диапазон из-
мерения образцов 40…900 °С, атмосфера – воздух). 

 
Результаты исследования и обсуждение 

 
В результате проведенных экспериментов по определению физико-структур-

ных параметров компактированного активированного углеродного материала по-
лучены значения пористости и удельной поверхности, представленные на рис. 2. 
Следует отметить, что в качестве результатов исследований представлены усред-
ненные значения, полученные по нескольким экспериментальным образцам. 

Проанализируем полученные результаты определения удельной поверхности 
(см. рис. 2, а): 

– для компактированного с использованием связующего ПВС активирован-
ного углеродного материала – наблюдается 1,5-кратное снижение удельной по-
верхности от внутренней части блочка к его периферии, что может быть результа-
том концентрации связующего компонента на внешней поверхности (выдавлива-
ние в результате прессования на периферию); 

– для материала с ПВА – незначительное снижение удельной поверхности от 
внутренней части блочка к периферии, что может свидетельствовать о более рав-
номерном распределении связующего компонента или наличии эффективных 
транспортных пор. При этом по сравнению с ПВС удельная поверхность внутрен-
ней части блочка в два раза ниже и становится сравнимой (несколько ниже) на 
периферии; 

– при использовании БВ удельная поверхность практически стабильна по 
всему объему блочка, что может говорить о равномерной транспортной доступно-
сти (и соответственно распределении связующего компонента) при применении 
базальтового волокна. 

При анализе объема пор (см. рис. 2, а, б) по образцу с ПВС наблюдается ана-
логичная (удельной поверхности) картина со снижением пористости в 1,5 – 2 раза 
от внутренней части блочка к его периферии, и в качестве причины можно пред-
положить накопление связующего компонента в порах активированного материа-
ла по его периферии, что подтверждается снижением объема пор и удельной по-
верхности. Для образцов со связующими ПВА и БВ картина в целом напоминает 
ситуацию с ПВС – падение пористости от внутренней части блочка к его перифе-
рии примерно на треть, но менее выраженное. Но при этом пористость компакти-
рованного активированного углеродного материала как с использованием ПВА, 
так и БВ, в 1,3 – 2 раза ниже, чем при применении ПВС.  

Рассматривая значения размера пор исследованных образцов (см. рис. 2, в), 
отметим общую картину для связующих ПВА и БВ – снижение размера от центра 
блочка к его периферии, но при этом для ПВС размер пор практически стабилен 
по всему объему образцов. Это вносит некоторую неоднозначность и противоре-
чивость в полученные значения. В общем, можно сказать, что наблюдается отно-
сительная «стабильность» размера пор (вывод на основе довольно небольшого 
диапазона значений) независимо от используемого связующего компонента  
и места отбора пробы. Однако наличие влияния на пористость исследованных 
образцов связующего или режимных параметров процесса компактирования нель-
зя исключать.  

Заметная разница в характеристиках материалов со связующими ПВА и ПВС 
(несмотря на общее подобие связующих компонентов и метод их внесения в угле-
родный материал) может быть вызвана, по мнению автора, целым рядом причин 
или их совокупностью: различиями в технологии приготовления компактированных 
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а) 

 
б) 

 

 
в) 

 

Рис. 2. Значения удельной поверхности (а), объема (б) и размера (в) пор  
исследованных образцов: 1 – ПВС; 2 – ПВА; 3 – БВ 
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материалов, свойствами самих связующих или не до конца понятной природы 
распределения данных компонентов по объему активированного углеродного ма-
териала при прессовании, что в свою очередь предполагает проведение дополни-
тельных исследований. 

Рассматривая результаты, полученные с помощью синхронного термическо-
го анализа, можно сделать следующие выводы: при использовании в качестве свя-
зующего ПВС отмечается его ярко выраженное неравномерное распределение 
(смещение от центральной части к периферии), что подтверждается предвари-
тельными исследованиями удельной поверхности и пористости, то есть смещение 
кривых ТГ – ДСК в левую сторону (больше связующего – более выраженная  
и ранняя деградация материала). В то же время для связующих ПВА и БВ харак-
терно их более равномерное распределение по объему исследованных образцов,  
с небольшим смещением его количества также к периферии (что в целом под-
тверждается результатами анализа) (рис. 3). При этом наличие нескольких пиков 
на ДСК кривых (материалы со связующими ПВА и ПВС) можно объяснить  
синергитическим эффектом от количества связующего и обработки материала 
давлением, проявляющимся применительно к скомпактированному материалу.  
 

 
а) 

 
б) 

 
Рис. 3. Результаты синхронного термического анализа 

 при использовании связующего (начало): 
а – ПВА; б – ПВС (показаны примеры результатов анализа (по одному образцу)  

для проб с внутренней и наружной поверхности блочка (соответственно точки Т2 и Т3)) 
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в) 

 
Рис. 3. Окончание: в – БВ 

 
Тогда как подобный эффект для материала со связующим БВ можно отнести  
к последствиям компактирования, причем неравномерного по объему образца  
и более высокой термостабильностью. При этом анализируя температуру дест-
рукции и фазовые переходы, можно выделить несколько участков, подобных для 
проб, с внутренней и внешней частями образцов, что объясняется природой взаи-
модействия углеродного материала со связующим при приложении давления 
(компактировании). Однако уточнение подобных эффектов, скорее всего, потре-
бует проведение дополнительных исследований. 

Это еще более заметно при проведении корреляции полученных значений по 
параметрам удельной поверхности и пористости отдельно по каждому из исполь-
зованных связующих (рис. 4). 

Полученные результаты сравним с результатами ранее проведенных иссле-
дований по определению физико-структурных характеристик исходного активи-
рованного углеродного материала (табл. 1) и параметрами типовых промышлен-
ных активированных углей [5, 6, 31, 35, 36].  

 

 
а)  
 

Рис. 4. Значения физико-структурных характеристик исследованных образцов  
при использовании связующего ПВА (а) (начало):  

1 – удельная поверхность, 2 – объем пор 
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б) 

 
в)  

 

Рис. 4. Окончание: ПВС (б), БВ (в):  
1 – удельная поверхность, 2 – объем пор 

 

Таблица 1 
 

Физико-структурные характеристики активированного  
и компактированного с различными связующими  

активированного углеродного материала 
 

Материал Удельная  
поверхность, м2/г 

Общий объем 
пор, см3/г 

Промышленные активированные угли1 600…2000 0,5…1,2 

Исходный активированный углерод-
ный материал2 2700 1,25 

Компактированный активированный 
углеродный материал:   

ПВА3 570…735 0,21…0,35 

ПВС3 685…1390 0,31…0,7 

БВ3 481…532 0,17…0,29 

П р и м е ч а н и е :  1, 2, 3 – усредненные значения соответственно по типо-
вым маркам промышленных активированных углей, для активированного угле-
родного материала и по объему образца для компактированного с различными 
связующими активированного углеродного материала. 
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Из представленных данных очевидно, что у компактированного с различны-
ми связующими активированного углеродного материала отмечается значитель-
ное снижение характеристик по удельной поверхности в 2 – 5 и 2 – 6 раз, по объ-
ему пор в 1,5 – 4 и 1,5 – 6 раз по отношению к активированному углеродному ма-
териалу и промышленным угольным сорбентам соответственно. 

Рассматривая размер пор исследованных образцов, компактированный мате-
риал можно отнести к микропористому: с диаметром пор 1,51…2,07 нм, 1,87 нм  
и до 3,2 нм для полученного компактированного с различными связующими угле-
родного материала, активированного углеродного материала и промышленных 
активированных углей (микропористый диапазон) соответственно. 

При этом в целом ряде работ отмечается значительная сорбционная актив-
ность компактированных активированных углеродных материалов как по органи-
ческим, так и неорганическим загрязнителям, превышающая показатели типовых 
промышленных углей [30, 36]. 

Рассматривая причины снижения характеристик, а часть их очевидна и по-
нятна (воздействие давления на активированный углеродный материал при ком-
пактировании, использование связующих, являющихся, по сути, балластом), по-
лученные результаты являются во многом интересными, несмотря на противоре-
чия. В связи с этим предполагается проведение на следующих этапах дополни-
тельных исследований, которые позволят ответить на целый ряд вопросов, на-
пример: какова причина и природа неравномерного распределения связующего 
компонента по объему блочка (избыток связующего, не оптимальность его коли-
чества или режимных параметров)? Каково влияние количества связующего на 
характеристики компактированного материала, например на транспортную дос-
тупность пор? Что оказывает большее влияния на параметры активированного 
углеродного материала при компактировании – связующее или режимные пара-
метры? Изменяется ли сорбционная активность по объему компактированного 
образца? Каковы механизмы и особенности процесса сорбции, одинаковы ли они 
по всему объему образца (блочка)? Какие методики диагностики будут являться 
наиболее корректными при исследовании подобных материалов? 

 
Заключение  

 

Проведенные исследования физико-структурных характеристик компактиро-
ванного активированного углеродного материала, полученного в результате вы-
сокотемпературной щелочной активации и последующего компактирования с ис-
пользованием связующих (поливинилового спирта, поливинилацентата и базаль-
тового волокна) позволили экспериментально определить параметры удельной 
поверхности и пористости (685…1390, 570…735, 483…532 м2/г; 0,31…0,7, 
0,21…0,35, 0,17…0,29 см3/г; 1,94…2,03, 1,75…2,05, 1,51…2,07 нм) для материа-
лов с ПВС, ПВА и БВ соответственно.  

В свою очередь синхронный термический анализ отчасти подтвердил неод-
нородность состава компактированных образцов по их объему (для ПВС), что 
хорошо коррелируется со снижением удельной поверхности и пористости иссле-
дованных образцов от центральной части к периферии, а также показал более 
сложную природу взаимодействия связующих ПВА и БВ с активированным угле-
родным материалом при компактировании. 

Однако несмотря на некоторую спорность полученных результатов, работа 
может послужить отправной точкой для проведения подобных исследований дру-
гими авторами, для уточнения отдельных характеристик компактированного ак-
тивированного углеродного материала и ответа на поставленные в ходе проведе-
ния данного исследования вопросы. 
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Abstract: High-temperature alkaline activation of carbon material in an inert 

environment and its compaction were carried out using various binders – polyvinyl 
alcohol, polyvinyl acetate, and basalt fiber. The physical and structural characteristics of 
compacted activated carbon material obtained in the previous experiments were studied, 
namely, the specific surface area and porosity (total pore volume and size) using the 
BET method, and the homogeneity of the component distribution in the experimental 
samples using simultaneous thermal analysis (TG and DSC analysis). The results of the 
studies are presented. The uneven distribution and nonlinear effect of the binding 
components on the physical and structural characteristics of the studied compacted 
activated carbon materials throughout their volume were established. 
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Einfluss von Bindemitteln  
auf die Eigenschaften des verdichteten Kohlenstoffmaterials 

 

Zusammenfassung: Es ist eine Hochtemperatur-Alkalination von 
Kohlenstoffmaterial in einer inerten Atmosphäre durchgeführt, gefolgt von dessen 
Verdichtung unter Verwendung verschiedener Bindemittel – Polyvinylalkohol, 
Polyvinylacetat und Basaltfaser. Die physikalisch-strukturellen Eigenschaften des 
verdichteten aktivierten Kohlenstoffmaterials aus zuvor experimentell hergestellten 
Proben sind untersucht, insbesondere die spezifische Oberfläche und Porosität 
(Gesamtporenvolumen und -größe) mittels BET-Methode sowie die Homogenität der 
Verteilung der Komponenten der experimentellen Proben mittels synchroner 
thermischer Analyse (TGA- und DSC-Analyse). Die Forschungsergebnisse sind 
präsentiert. Es sind eine ungleichmäßige Verteilung und ein nichtlinearer Einfluss der 
Bindemittelkomponenten auf die physikalisch-strukturellen Eigenschaften des 
untersuchten verdichteten Aktivkohlematerials über dessen gesamtes Volumen 
festgestellt.  

 
 

Influence des liants sur les caractéristiques  
du matériau de carbone compact 

 

Résumé: Est réalisée l'activation alcaline à haute température du matériau natif 
de charbon dans un milieu inerte, son compactage à l'aide de divers matériaux de 
liaison-alcool polyvinylique, acétate de polyvinyle et fibre de basalte. Sont étudiées les 
caractéristiques physiques et structurelles du matériau carboné active compact à partir 
des échantillons expérimentaux précédemment obtenus: la surface spécifique et la 
porosité (volume total des pores et leur taille) par la méthode BET et l'homogénéité de 
la distribution des composants des échantillons expérimentaux par la méthode d'analyse 
thermique synchrone (analyse TG et DSK). Les résultats des études sont présentés.  
La distribution inégale et l'influence non linéaire des composants de liaison sur les 
caractéristiques physico-structurelles des matériaux carbonés activés compactés étudiés 
en volume sont établies. 
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