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Аннотация: Исследованы режимы работы компенсатора реактивной мощ-
ности STATCOM в электрических сетях с ветроэлектрическими установками. 
Проведено моделирование функционирования асинхронного генератора с пере-
менной частотой посредством использования преобразователя AC/DC/AC.  
Доказана способность STATCOM обеспечивать динамическую стабилизацию на-
пряжения в диапазоне 0,95…1,05 о.е. при резких изменениях скорости ветра  
и аварийных ситуациях, включая восстановление номинального уровня напряже-
ния за 0,2…0,5 с после коротких замыканий. Проанализировано повышение элек-
тродинамической устойчивости энергосистемы и увеличение пропускной способ-
ности линий электропередачи на 12 – 15 % за счет оперативной компенсации  
реактивной мощности. 

 
 

 
Введение 

 

Большие запасы нефти, газа и угля и их доступность определили российскую 
модель развития энергетики. Так, удельная мощность возобновляемых источни-
ков энергии (ВИЭ) в России без учета гидроэлектростанций (ГЭС) практически 
полностью состоит из ветровых электростанций (ВЭС) и фотоэлектрических 
(ФЭС) установок и составила в 2021 г. 1,12 %. Однако изменения в структуре 
энергетического комплекса в последние годы стали более заметными:  
в 2020 г. впервые за 5 лет произошло снижение суммарной установленной мощ-
ности тепловых электростанций на 1320 МВт, что примерно эквивалентно увели-
чению установленной мощности ВИЭ на 1207 МВт. Следует отметить, что энер-
гетический комплекс России в целом низкоуглеродный, при этом более половины 
удельной мощности энергосистем приходится на гидроэнергетику и атомные 
электростанции [1]. На глобальном уровне повышение электрической нагрузки 
привело к значительному увеличению мощностей по выработке электроэнергии. 
Кроме того, поскольку электростанции обычно располагаются далеко от центров 
электрических нагрузок, возможны значительные потери электроэнергии и труд-
ности с обеспечением необходимого уровня напряжения. В связи с этим возника-
ет необходимость установки объектов распределенной генерации (РГ) – неболь-
ших объектов, работающих при единичном коэффициенте мощности, таких как 
фотоэлектрические батареи, топливные элементы и аккумуляторы. Располагаясь 
вблизи центров нагрузки, они могут также способствовать решению этих про-
блем. Однако наиболее эффективным является включение в состав энергетиче-
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ского комплекса встроенных установок [2], поэтому актуально повышение эффек-
тивности функционирования ветроэнергетической установки (ВЭУ) при включе-
нии в состав комплекса установки статического компенсатора реактивной мощно-
сти STATCOM [3].  

Цель работы – исследование режимов работы компенсатора реактивной 
мощности STATCOM в электрических сетях с ветроэлектрическими установками. 
  

Имитационная модель генератора IG со STATCOM 
 

Методы моделирования IG (асинхронный генератор) 
 

Предыдущие исследования столкнулись с некоторыми проблемами при мо-
делировании интеграции системы STATCOM с асинхронными двигателями вет-
ряной электростанции, такими как интеграция устройств защиты при нештатных 
рабочих ситуациях и тройных отказах или выходе из строя одной из турбин или 
группы турбин при увеличении скорости ветра в регионе [4]. Для решения этих 
задач предлагается использовать метод математического моделирования с ис-
пользованием уравнений или моделирующих схем для управления электрически-
ми конструкциями в компьютерных программах, таких как MATLAB, NEPLAN, 
ETAB и др. [5] В зависимости от частотного диапазона в специализированных 
энергосистемах в настоящее время доступны три метода моделирования для изу-
чения систем преобразования мощности на основе преобразователей напряжения, 
построенных на базе IGBT-транзисторов. Для достижения приемлемой точности  
с частотами переключения 1620 и 2700 Гц, используемыми в данной модели, они 
должны быть дискретизированы с относительно небольшим временным шагом  
в 5 мкс. Такая модель хорошо подходит для наблюдения за гармониками и дина-
мическими характеристиками системы управления в течение относительно корот-
ких периодов времени (от сотен миллисекунд до одной секунды). 

В основу исследования положена дискретная усредненная модель ветрогене-
ратора с двойным питанием ротора (DFIG), реализованная в примере 
power_wind_dfig_avg (дискретная усредненная модель) библиотеки MATLAB [6]. 
В данной модели силовые преобразователи с источником напряжения аппрокси-
мируются эквивалентными источниками напряжения, формирующими усреднен-
ное значение переменного напряжения за период коммутации. Такой подход 
обеспечивает учет динамических свойств системы при возможности использова-
ния увеличенного шага интегрирования (порядка 50 мкс). Это позволяет прово-
дить моделирование процессов длительностью до нескольких секунд, что опреде-
ляет выбор данной модели для настоящего исследования. 

Для анализа низкочастотных электромеханических колебаний в продолжи-
тельных временных интервалах (от десятков секунд до минут) использована не-
прерывная векторная модель ветрогенератора с двойным питанием ротора, пред-
ставленная в примере power_wind_dfig (непрерывная векторная модель) библио-
теки MATLAB [7], где синусоидальные напряжения и токи заменяются комплекс-
ными векторными величинами, фиксированными на номинальной частоте сети  
50 Гц. Такой метод, широко применяемый в программных комплексах для анали-
за устойчивости энергосистем, обеспечивает эффективное моделирование мед-
ленных динамических процессов. 

 
Разработка математической модели ветроэнергетической установки  

с интегрированным STATCOM в среде MATLAB /Simulink 
 

При разработке математической модели ВЭУ применен асинхронный гене-
ратор с короткозамкнутым ротором (IG – Induction Generator). Электромагнитные 
процессы в генераторе описаны уравнениями Парка–Горева в среде MATLAB/ 
Simulink. Параметры генератора представлены на рис. 1 и в табл. 1. 
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Исследования подтвердили, что асинхронные генераторы, особенно с двой-
ным питанием ротора (DFIG), благодаря превосходству динамических характери-
стик над синхронными машинами, являются преобладающей технологией в со-
временных ВЭУ. Компенсация реактивной мощности решает две ключевые зада-
чи – коррекцию коэффициента мощности нагрузки и стабилизацию напряжения 
на распределительных шинах. 

Первая задача решается повышением коэффициента мощности, особенно ак-
туальным для крупных потребителей. Вторая – обеспечивается балансировкой 
реактивной мощности посредством специализированных устройств: статических 
компенсаторов (SVC) и статических синхронных компенсаторов (STATCOM). 
Последние, как представители семейства FACTS, применяются в системах пере-
дачи электроэнергии для повышения устойчивости. 
 

Заключение 
 

Обеспечение устойчивости энергосистем – ключевая задача при интеграции 
возобновляемых источников энергии наряду с традиционной генерацией. 
STATCOM обеспечивает превосходное регулирование напряжения по сравнению 
со статическими компенсаторами в условиях системных возмущений [8]. Соглас-
но результатам моделирования, STATCOM поддерживает напряжение вблизи 
номинального уровня (1,0 о.е.) при интеграции мощности ветрогенераторов,  
а также оперативно компенсирует дисбалансы, восстанавливая номинальное на-
пряжение за минимальное время. Благодаря таким динамическим характеристи-
кам, как быстродействие и точность стабилизации, STATCOM демонстрирует 
более высокую эффективность компенсации реактивной мощности, чем тири-
сторные статические компенсаторы. 

Повышение электродинамической устойчивости энергосистем, интегрирую-
щих в себя ветровые электростанции, достигается применением устройств FACTS 
(англ. Flexible AC Transmission Systems), таких как статический синхронный компенса-
тор STATCOM. Динамическая модель системы реализована в MATLAB/Simulink. 
Для оценки влияния системы управления STATCOM на поведение энергосистемы 
исследованы аварийные и послеаварийные режимы, включая трехфазные корот-
кие замыкания и скачкообразные изменения нагрузки. Результаты моделирования 
подтверждают эффективность STATCOM в следующих аспектах: 

– повышение устойчивости (включая демпфирование мощностных колебаний); 
– стабилизация напряжения в диапазоне 0,95…1,05 о.е. [9]; 
– рост пропускной способности линий электропередачи на 12 – 15 % [10]; 
– восстановление напряжения до номинала за 0,2…0,5 с после короткого за-

мыкания благодаря генерации реактивной мощности [11]. 
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Abstract: The paper presents the finding of the research into the operating modes 

of the STATCOM reactive power compensator in electric grids with wind turbines.  
The operation of an asynchronous generator with a variable frequency was simulated 
using an AC/DC/AC converter. The study demonstrated the ability of STATCOM to 
provide dynamic voltage stabilization in the range of 0.95–1.05 p.u. during sudden 
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changes in wind speed and emergency situations, including restoration of the nominal 
voltage level within 0.2–0.5 s after short circuits. The improvement in the 
electrodynamic stability of the power system and the increase in transmission capacity 
of power lines by 12–15 % due to operational reactive power compensation were 
analyzed. 
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Forschung und Simulation eines asynchronen Generators  
mit einem statischen Synchronkompensator (STATCOM) 

 
Zusammenfassung: Die Betriebsarten eines STATCOM-

Blindleistungskompensators in Stromnetzen mit Windkraftanlagen sind untersucht.  
Der Betrieb eines Asynchrongenerators mit variabler Frequenz ist mithilfe eines 
AC/DC/AC-Umrichters simuliert. Die Fähigkeit des STATCOM, eine dynamische 
Spannungsstabilisierung im Bereich von 0,95–1,05 p.u. bei plötzlichen 
Windgeschwindigkeitsänderungen und in Notfallsituationen zu gewährleisten, 
einschließlich der Wiederherstellung des Nennspannungsniveaus innerhalb von  
0,2–0,5 s nach Kurzschlüssen, ist demonstriert. Die Verbesserung der 
elektrodynamischen Stabilität des Stromnetzes und die Erhöhung der 
Übertragungskapazität der Stromleitungen um 12–15 % durch die 
Blindleistungskompensation sind analysiert. 
 
 

Recherche et modélisation du générateur asynchrone  
avec compensateur synchrone statique STATCOM 

 
Résumé: Sont étudiés les modes de fonctionnement du compensateur de 

puissance réactive STATCOM dans les réseaux électriques avec des installations 
éoliennes. Est réflisée la simulation du fonctionnement d'un générateur asynchrone à 
fréquence variable à l'aide d'un convertisseur AC/DC/AC. Est prouvée la capacité de 
STATCOM à fournir une stabilisation dynamique de la tension dans la plage de  
0,95–1,05 OE avec des changements brusques de la vitesse du vent d'urgence,  
y compris le rétablissement de la tension nominale entre 0,2 et 0,5 s après un court-
circuit. Sont analysées l'augmentation de la stabilité électrodynamique du réseau 
électrique et l'augmentation de la capacité des lignes de transmission de 12 à 15 % grâce 
à la compensation opérationnelle de la puissance réactive. 
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