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Аннотация: Представлен обзор используемых в сельском хозяйстве мо-

бильных робототехнических платформ и моделей управления их электроприво-
дами. Проведено моделирование электропривода постоянного тока. Получены 
оптимальные настройки параметров системы управления электроприводом.  
Разработана модель перемещения платформы на плоскости и показан алгоритм 
управления ею, обеспечивающий заданную траекторию движения. 

 
 

 
Введение 

 

Сельское хозяйство сталкивается с необходимостью повышения эффектив-
ности производства и качества растительной продукции. Традиционные методы 
мониторинга состояния растений трудоемки, ресурсоемки, часто не обеспечивают 
достаточной точности. В ответ на эти вызовы активно развиваются технологии 
точного земледелия, в том числе использование робототехнических платформ для 
автоматизированного мониторинга. 

Данная статья посвящена разработке системы управления мобильной робо-
тотехнической платформой, предназначенной для проксимального зондирования 
растений.  

Цель работы – определение оптимальных параметров (настроек) системы 
управления, обеспечивающей позиционирование платформы на местности.  
Для достижения цели поставлены и решены следующие задачи: 

1) обзор существующих мобильных робототехнических платформ в сельском 
хозяйстве и анализ моделей управления их электроприводами; 

2) моделирование системы управления электроприводами платформы; 
3) разработка модели пространственного перемещения платформы и алго-

ритма управления, обеспечивающего заданную траекторию движения.  
Результаты проведенного исследования позволяют оценить эффективность 

разработанной системы управления и ее потенциал применительно к задачам про-
ксимального зондирования растений. Статья содержит описание используемых 
методов, полученных результатов моделирования и экспериментальные данные, 
подтверждающие работоспособность представленной системы. 
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Обзор существующих робототехнических платформ  
и систем управления электроприводами 

 

Робототехнические платформы для механической и химической прополки 
сорняков представлены следующими типами: HortiBot, Aarhus University (Да-
ния) [1], Vitirover, NaïoTechnologies (Франция) [2], EcoRobotix (Швейцария), 
BoniRob (Deep field Robotics, Германия) [3], FarmWise (США), AgBot II, Digital 
Farmhand (Австралия), FarmDroid (Германия). По утверждению исследователей  
и разработчиков, эффективность механической прополки средствами робоплат-
форм достигает 90 %, а обработка гербицидами – 100 % благодаря точному наце-
ливанию на сорняки с применением системы Drop-on-Demand (DoD) [4]. Следует 
отметить, что для существующих робототехнических платформ мало сведений  
о фактической производительности и адаптируемости для культур с другими экс-
плуатационными требованиями. Для расширения сферы коммерческого использо-
вания таких робоплатформ требуется увеличение их рабочей скорости и произво-
дительности, площади обрабатываемой поверхности, а также повышение точно-
сти обнаружения сорняков. 

Ряд исследований посвящены робототехническим технологиям обнаружения 
и идентификации болезней [5], а также насекомых-вредителей [6]. Исследовате-
лями предложены модели сверточной нейронной сети для множественной клас-
сификации насекомых, а также методы грубого обнаружения и подсчета YOLO 
(You Only Look Once), методы классификации и точного подсчета на основе SVM 
(Support Vector Machines) с использованием глобальных функций. Предложенные 
алгоритмы позволили детектировать симптомы мучнистой росы, вируса пятни-
стого увядания томатов, поражения бактерией Xylella fastidiosa и др. 

Для фенотипирования посевов сахарной свеклы разработана автономная ро-
бототехническая платформа (Bernard, Франция), включающая колесный мобиль-
ный робот и манипулятор с шестью степенями свободы для колориметрических  
и геометрических измерений растений. Университетом Карнеги–Меллона разра-
ботана робототехническая наземная платформа высокопроизводительного фено-
типирования пропашных культур сорго и кукурузы. Полностью автоматизиро-
ванная платформа для фенотипирования (Rothamsted Research, Великобритания) 
включает в себя RGB-камеры высокого разрешения, а также камеры, детекти-
рующие яркость флуоресценции хлорофилла и тепловизионные инфракрасные 
камеры, два гиперспектрометра и два лидара. 

Создан ряд коммерчески доступных автономных и полуавтономных робото-
технических платформ для сбора различных плодов (табл. 1). 

Можно выделить два основных подхода к управлению робототехническими 
платформами. 

Первый подход использует камеры и алгоритмы компьютерного зрения для 
восприятия окружающей среды. Робототехническая платформа анализирует изо-
бражения в реальном времени, чтобы определять свое положение, обнаруживать 
препятствия, распознавать объекты и следовать по заданной траектории.  
Преимущества включают возможность работы в динамичных и неструктуриро-
ванных средах, а также адаптацию к меняющимся условиям. Однако такой подход 
зависит от качества освещения, может быть чувствителен к помехам и требует 
значительных вычислительных ресурсов для обработки изображений. 

Второй подход базируется на использовании инерциальных измерительных 
блоков (IMU), которые регистрируют ускорение и угловую скорость платформы. 
На основе этих данных, с применением алгоритмов интеграции, вычисляется те-
кущее положение и ориентация робота. Инерциальное управление обеспечивает 
автономность и независимость от внешних сенсоров, а также высокую точность 
при перемещении на короткие расстояния. 
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Таблица 1 
Список коммерчески доступных автономных  

и полуавтономных робототехнических платформ 
 

Продукт Производитель  
робототехнической платформы Страна 

Яблоки Abundant Robotics США 
FF Robotics Израиль 

Клубника Dogtooth Technologies Великобритания 
Rubion Octinio Бельгия 

Thorvald II Норвегия 
Agrobot SW 6010 Испания 

Сладкий перец Sweeper Нидерланды 
Спаржа Cerescon Нидерланды 
Томаты Metomotion Израиль 

Root-AI США 
Апельсины Energid США 

Agribot Испания 
Огурцы VanHenten Нидерланды 

Баклажаны Hayashi Япония 
Арбузы Umeda Япония 
Грибы Agaricus bisporus Великобритания 

 
В рамках данной статьи необходимо построить модель пространственного 

перемещения платформы и алгоритм управления ею.  
При разработке или изучении алгоритмов нелинейного управления возникает 

сложность: их анализ возможен только в динамике и при взаимодействии с внеш-
ней средой. Использование реального объекта на ранних этапах проблематично, 
поэтому применяется компьютерное моделирование. Для корректности модели-
рования важно правильно ставить задачи. В данной работе рассматривается зада-
ча, к которой предъявляются требования наглядности и простоты для интуитив-
ного понимания методологии без сложных вычислений. 

Для моделирования системы управления платформой выбран отечественный 
программный продукт SimInTech (Simulation In Technic, моделирование в техни-
ческих устройствах) компании ООО «3В Сервис». В отличие от иных средств си-
муляции математических моделей он обладает встроенным блоком «Оптимиза-
тор». Данный блок позволяет определить тип регулятора и с заданной точностью 
параметры (составляющие) регулятора, которые обеспечивают наилучшее качест-
во переходных процессов регулирования. Примеры подобных расчетов различных 
типов двигателей рассмотрены в работах [7 – 15]. 

 
Технические компоненты колесной робототехнической платформы 

 

Общий вид разработанной платформы представлен на рис. 1. Особенностью 
платформы является мобильность и возможность использования устройств, кото-
рые можно на нее установить с целью мониторинга качества растительной про-
дукции и растений в сельском хозяйстве. 
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Пульт управления подает сигнал на приемник (RC receiver), который в свою 
очередь посылает сигнал на реле, тем самым переключает сигнал на управление 
колесной робототехнической платформой с пульта управления. В случае авто-
номного перемещения, управление VESC-контроллерами выполняет промышлен-
ный компьютер (AIE100-903-FE-NX). Сигнал с компьютера поступает на ШИМ-
контроллер (ATmega328p), после чего реле (Relay) переключает управление  
с пульта управления на компьютер. Компьютер получает информацию со стерео-
метрической камеры ZED2i, установленной на платформе, а также сенсорных 
датчиков (US Sensors). Полученные данные с датчиков способствуют безопасному 
передвижению колесной робототехнической платформы. Непосредственно элек-
тродвигателем управляет VESC-контроллер. 

Для повышения автономности платформы необходимо решить задачи разра-
ботки алгоритмов ее управления, прежде всего приводами платформы. 

 
Моделирование системы управления приводами платформы 

 

Упрощенная электрическая принципиальная схема системы управления при-
водом платформы показана на рис. 3 [16]. Модуль обеспечивает управление угло-
вой скоростью вращения вала двигателя постоянного тока (ДПТ) в соответствии  
с заданным цифровым сигналом 0

~
U , который формируется программными сред-

ствами в микроконтроллере (МК). Аналого-цифровой преобразователь (АЦП) 
кодирует аналоговые сигналы обратной связи 1U  в цифровой сигнал 1

~
U , который 

поступает на вход МК; на другой его вход подается цифровой задающий сигнал 

0
~

U ; в МК выполняются операции вычисления сигнала рассогласования и предпи-

санного алгоритма управления; выходная величина микроконтроллера 2
~

U  в дво-
ичном коде подается на вход цифро-аналогового преобразователя (ЦАП), кото-
рый преобразует цифровую величину 2

~
U  в аналоговое значение напряжения 2U . 

Затем этот сигнал поступает на усилитель (У), обозначенный на схеме как 3U , 
после чего значение 3U  подается на силовой преобразователь (СП), который в 
зависимости от величины 3U  формирует напряжение на якоре ДПТ яU . От зна-
чения яU  зависит значение угловой скорости на валу ДПТ, которая передается на 
вал рабочего органа (РО) помощью редуктора (Р). Датчик угловой скорости вра-
щения вала двигателя (ДС) регистрирует ее значения, которые преобразует в ана-
логовый сигнал напряжения UДС.  

  

 
 

Рис. 3. Упрощенная электрическая принципиальная схема  
системы управления приводом [16] 

СР
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Рис. 5. График переходного процесса модели, включающей двигатель  

и ПИД-регулятор:  
1 – ωД(t); 2 – ωД зад(t) 

 
 

Моделирование пространственного перемещения платформы  
и алгоритма управления, обеспечивающего заданную траекторию движения 

 

Для моделирования пространственного перемещения платформы модель 
управления электроприводом дополнена моделью пространственного положения, 
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где Vx и Vy – скорости платформы вдоль осей x и y соответственно, причем ось y 
направлена от центра масс платформы в сторону ее передней части, то есть по 
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щения колес платформы, полученные путем приведения угловых скоростей вра-
щения выходных валов двигателей с помощью коэффициента передачи двух по-

следовательных цепных передач ,118,0
5,8

1
цеп ==k  рассчитанного как произведе-

ние двух отношений (между валами двигателя и колес установлено последова-
тельно две цепные передачи) количества зубьев на ведомой звездочке к количест-
ву на ведущей; θ – текущий угол между положительным направлением оси x  
и направлением прямого движения платформы; r – радиус колеса платформы;  
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На рисунке 6 показана структурная модель, выполненная в программе  
SimInTech, входными сигналами которой являются угловые скорости w1 и w2 
вращения колес платформы. Выходные параметры модели – линейные скорости 
Vx и Vy перемещения платформы вдоль осей x, y соответственно, а также коорди-
наты положения платформы. 

Указанная модель позволила разработать алгоритм управления, включающий 
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Заключение 
 

Таким образом, проведен обзор используемых в сельском хозяйстве мобиль-
ных робототехнических платформ и моделей управления их электроприводами. 
Выделены два основных подхода к управлению робототехническими платформа-
ми. Выбрана инерционная модель благодаря автономности и независимости от 
внешних сенсоров. Данный подход позволяет платформе ориентироваться даже  
в условиях недостаточной освещенности. Проведено моделирование работы вы-
бранного двигателя постоянного тока. Аналитическим методом рассчитаны со-
ставляющие ПИД-регулятора для управления работой выбранного двигателя  
и осуществлен синтез такого регулятора. Построена модель пространственного 
перемещения платформы и представлен алгоритм управления ею, обеспечиваю-
щий заданную траекторию движения. 

Проведенные исследования применимы для перемещения роботизированной 
платформы в теплицах и на складах. Робототехническая платформа при переме-
щении по пересеченной местности сталкивается с такими проблемами, как силь-
ные вибрации и пониженная энергоэффективность, загрязнения. Предметом даль-
нейших разработок является совершенствование модели для снижения требова-
ний к качеству дорожного покрытия в местах применения платформы. 

 
Исследование выполнено при финансовой поддержке Министерства науки  
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роботизированного комплекса наземной и воздушной беспилотных платформ для 
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Simulation of the Control System for a Ground-Based  
Robotic Platform for Agriculture 
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Abstract: The article provides an overview of mobile robotic platforms which 

are used in agriculture and control models for their electric drives. A simulation of a DC 
electric drive was carried out; optimal settings were obtained for the parameters of the 
electric drive control system. A model of moving the platform on a plane was 
developed, and an algorithm for controlling it was presented, which allows to ensure  
a given trajectory of movement. 
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Simulation eines Steuerungssystems für eine bodengestützte  
Roboterplattform für die Landwirtschaft 

 
Zusammenfassung: Dieser Artikel bietet einen Überblick über mobile 

Roboterplattformen in der Landwirtschaft und Regelungsmodelle für deren elektrische 
Antriebe. Ein Gleichstromantrieb ist simuliert. Optimale Einstellungen für die 
Parameter des Regelungssystems sind ermittelt. Ein Modell der Plattformbewegung auf 
der Ebene ist entwickelt und ein Regelungsalgorithmus zur Sicherstellung einer 
vorgegebenen Trajektorie ist vorgestellt. 

 
 

Simulation du système de contrôle de plate-forme  
robotique terrestre pour l'agriculture 

 
Résumé: Est présentée une vue d'ensemble des plates-formes robotiques mobiles 

utilisées dans l'agriculture et des modèles de contrôle de leur alimentation électrique. 
Est réalisée une simulation d'entraînement électrique à courant continu. Sont optimisés 
les paramètres du système de commande électrique. Est développé un modèle de 
déplacement de la plate-forme sur le plan; est montré un algorithme de contrôle pour 
fournir une trajectoire de mouvement donnée. 
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