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Аннотация: Рассмотрены структура и функции комплекса программ, реа-

лизующего методику оптимизации процесса механического перемешивания 
(ПМП) гомогенной жидкости в вертикальном емкостном аппарате, которая вклю-
чает: математическую модель ПМП, разработанную на основе осредненных по 
Рейнольдсу уравнений Навье–Стокса и RNG k–ε-модели турбулентности; поста-
новку задачи оптимизации параметров конструкции и режима функционирования 
механических перемешивающих устройств (МПУ) с точки зрения дисперсии век-
тора скорости перемешиваемой жидкости; алгоритм решения задачи оптимиза-
ции, разработанный на основе теории многофакторного вычислительного экспе-
римента. Представлены результаты сравнения эффективности разработанного 
комплекса программ с популярными системами инженерного анализа, его приме-
нения для модификации параметров МПУ промышленного аппарата АО «Пиг-
мент» (Тамбов). 
 

 
 

Введение 
 

В публикациях [1, 2] предложена методика оптимизации процесса механиче-
ского перемешивания (ПМП) жидкости в вертикальной емкости, включающая 
математическую модель ПМП, постановку задачи оптимизации параметров кон-
струкции и режима функционирования механических перемешивающих уст-
ройств (МПУ) вертикальных емкостных аппаратов и алгоритм ее решения.  

Основными параметрами конструкции МПУ являются: диаметр мешалки Dm, 
ширина ее лопасти Нm и высота установки над днищем аппарата hhm. Режим 
функционирования МПУ характеризуется частотой вращения вала мешалки n. 

Исследуется установившееся движение гомогенной жидкости в вертикаль-
ной цилиндрической емкости, поэтому разработанная математическая модель 
ПМП включает осредненные по Рейнольдсу уравнения Навье–Стокса, дополнен-
ные полуэмпирической RNG k–ε-моделью турбулентности, в цилиндрической 
системе координат.  

При ее разработке приняты допущения об изотермичности ПМП и симмет-
ричности поля скоростей перемешиваемой жидкости относительно оси вращения 
мешалки, совпадающей с вертикальной осью симметрии емкостного аппарата. 
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Как следствие, моделируется двумерное поле скоростей перемешиваемой жидко-
сти (по высоте l и радиусу r аппарата). Для решения разработанной математиче-
ской модели ПМП использовалась кросс-компилированная версия blueCFD (Com-
putational Fluid Dynamics) свободно распространяемого комплекса программ 
OpenFOAM [3]. Адекватность модели подтверждена результатами лабораторных 
экспериментов.  

В качестве критерия эффективности ПМП использована дисперсия длины 
вектора скорости перемешиваемой жидкости, выбранная в качестве расчетной 
характеристики равномерности поля скоростей перемешиваемой жидкости в объ-
еме аппарата, то есть отсутствия застойных зон и зон повышенных скоростей.  

Алгоритм решения задачи оптимизации параметров конструкции и режима 
функционирования МПУ разработан на основе теории планирования многофак-
торного вычислительного эксперимента. В качестве плана эксперимента выбран 
ортогональный центральный композиционный план (ОЦКП). 

В работе [2] приведены результаты применения разработанной методики для 
оптимизации параметров конструкции лабораторного аппарата, оснащаемого 
двухлопастной, турбинной открытой и трехлопастной мешалкой с наклонными 
лопастями. Полученные оптимальные значения ширины лопастей этих мешалок 
превышают рекомендуемые документом [4] в 1,7 – 2,5 раза. Значения дополни-
тельных параметров конструкций мешалок (число лопастей и диаметр диска тур-
бинной отрытой мешалки, угол наклона лопастей трехлопастной мешалки к гори-
зонтали) определены методом перебора при оптимальных значениях основных. 

В данной работе рассматривается структура, функции и результаты практи-
ческого применения комплекса программ, реализующего предложенную методи-
ку оптимизации ПМП гомогенной жидкости в вертикальном емкостном аппарате. 
Представлению комплекса предшествует описание модификаций процедуры про-
верки адекватности математической модели, способа расчета значений критерия 
оптимальности и обоснования выбора вида полинома регрессии, формируемого 
по результатам вычислительного эксперимента.  

 
Подтверждение адекватности предложенной  

математической модели ПМП 
 

Адекватность математической модели ПМП, представленной в [1, 2], под-
тверждается сравнением значений затрат мощности на перемешивание N, рассчи-
танных по результатам решения модели, измерений напряжения питания и силы 
тока, потребляемого электродвигателем привода мешалки лабораторного аппара-
та, при перемешивании гомогенной жидкости (Uж и Iж) и вращении мешалки  
в пустом аппарате (Uп и Iп).  

Значения N рассчитываются по найденным в результате решения модели 
значениям компонент вектора скорости перемешиваемой жидкости по высоте  
и радиусу аппарата , riliu u , i = 1, ..., z, где z – число конечных элементов (КЭ), 
сформированных в объеме перемешиваемой жидкости, следующим образом: 

 

кр2N М n= π ,                                                        (1) 

где кр вт
1

1 z

i i
i

М F r
z =

= ∑  – осредненный крутящий момент, необходимый для преодо-

ления сил внутреннего трения в перемешиваемой жидкости; ri – радиус располо-
жения i-го КЭ, м; ( )вт eff gradi i iF u s= μ  – cила внутреннего трения в i-м КЭ, Н;  

si – поверхность соприкосновения i-го КЭ с соседним по радиусу аппарата, м2; 
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сти жидкости в i-м КЭ. 
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Расчет затрат мощности на переме-
шивание в лабораторном аппарате, осна-
щенном электродвигателем постоянного 
тока, производился по формуле [5]: 

 

ж ж п п

п

I U I UN
K
−

= ,               (2) 

 

где Kп – коэффициент пусковых перегру-
зок, значения которого принимались со-
гласно рекомендациям [4]. 

Отклонение значений N, рассчитан-
ных по (1) и согласно (2), не превышает 
5 %, что свидетельствует об адекватности 
предложенной в [1, 2] математической мо-
дели ПМП. Отмечены существенные от-
личия результатов расчетов значений за-
трат мощности на перемешивание по ме-
тодике, рекомендуемой [4], от результатов 
экспериментов и расчетов по (1), (2) для 
открытой турбинной и трехлопастной ме-
шалок.   

Адекватность разработанной математической модели ПМП подтверждена  
и результатами эксперимента на промышленном аппарате ВЭЭ2–3–0,63–0,6У 
объемом 0,63 м3, диаметром корпуса Dr = 1 м и высотой Hr = 0,875 м,  
открытая турбинная мешалка которого, установленная на высоте hhm = 0,22 м  
от днища, имеет диаметр Dm = 0,25 м, ширину лопасти Нm = 0,12 м (рис. 1). Аппа-
рат заполнялся артезианской водой (0,47 м3), подогретой до температуры 20 °С, 
плотностью 1027 кг/м3, кинематической вязкостью 1,006·10–6 м2/с. 

Отличие экспериментов на промышленном аппарате от лабораторного – ис-
пользование привода МПУ, оснащенного электродвигателем переменного тока  
с короткозамкнутым ротором. Номинальное напряжение питания двигателя  
380 В, номинальная частота вращения ротора 750 мин–1, номинальный ток 2,4 А, 
коэффициент мощности cosφ = 0,6, мощность 550 Вт. Расчет затрат мощности на 
перемешивание проводился по формуле [5] 

 

( )ж ж п п

п

3 cosI U I U
N

K
− ϕ

= .                                        (3) 

 

Аппарат (см. рис. 1) функционирует в одном из цехов АО «Пигмент» (Там-
бов), поэтому изменения типа и геометрии мешалки были невозможны. Частота ее 
вращения изменялась с применением частотного преобразователя от 100 до  
360 мин–1 с шагом 20 мин–1. В таблице 1 сведены значения затрат мощности на 
перемешивание, рассчитанные по (1), согласно (3) по результатам измерений зна-
чений Uж и Iж, Uп и Iп, а также по методике, рекомендуемой [4]. Сравнение ре-
зультатов расчетов значений N по (1) и по (3) подтверждает адекватность исполь-
зуемой модели ПМП: отклонение не превышает 3 %.  

Рис. 1. Промышленный аппарат
для проведения экспериментов  
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Таблица 1 
Результаты расчетов мощности перемешивания 

 

Частота вращения  
мешалки, мин–1 

Значение N, Вт 
по (1) по (3) по [4] 

100 6,316 6,188 7,430 
120 7,016 6,978 12,045 
140 9,067 8,953 18,129 
160 10,95 10,719 25,841 
180 11,834 11,719 35,333 
200 15,873 15,928 46,751 
220 18,353 18,030 60,237 
240 19,575 19,082 75,926 
260 21,391 21,189 93,952 
280 30,444 30,800 114,444 
300 36,503 35,543 137,528 
320 42,197 41,202 163,329 
340 50,461 49,760 191,966 
360 53,149 52,262 223,559 

 
Заметим, что результаты расчетов значений затрат мощности на перемеши-

вание открытой турбинной мешалкой, согласно [4], существенно превышают ре-
зультаты расчетов, согласно (1), (3): при n = 360 мин–1 более, чем на 400 %. 

 
Критерий эффективности ПМП 

 

Расчет критерия эффективности ПМП осуществляется по формуле 
 

( )2
1

1
svs

z

i i
i

K U U
z =

= −∑ ,                                                  (4) 

 

где 2 2
i riliU u u= +  – длина вектора скорости перемешиваемой жидкости для  

i-го узла конечно-элементной расчетной модели, м/с; , riliu u  – компоненты векто-
ра скорости перемешиваемой жидкости по высоте и радиусу аппарата для  

i-го узла, м/с; 
1

1 z

i i
i

U U
z =

= ∑ – среднее арифметическое значение Ui по объему пере-

мешиваемой жидкости, м/с.  
Минимальное значение критерия (4), равное нулю, соответствует абсолют-

ной равномерности поля скоростей перемешиваемой жидкости, в том числе и от-
сутствию перемешивания, то есть n = 0. С другой стороны, в промышленной 
практике обычно увеличивают частоту вращения механических мешалок до мак-
симально возможных значений, так как при этом возрастают скорости реализуе-
мых технологических процессов (тепломассообмена, химических превращений). 
Следовательно, критерий (4) необходимо дополнить ограничением 

 

{ }max pmin ,n n n= ,                                                      (5) 
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где nmax – максимально допустимое значение n, c–1, определяемое конструкцией 
мешалки и свойствами перемешиваемой среды [4]; nр – значение n, определяемое 
мощностью привода МПУ, c–1. 

Анализ опыта промышленной эксплуатации вертикальных емкостей с МПУ 
показывает, что мощность двигателя привода мешалки Рдв обычно не превышает 
значения Pдв.доп, определяемого величиной рабочего объема аппарата (1 кВт на 
каждый м3), то есть значение np можно определить из ограничения 

 

дв.доп пN Р K≤ . 
 

С учетом возможности определения значения N согласно (1)  
 

   дв.доп
p

кр п2
Р

n
М K

≤
π

.                                                   (6) 

 

Таким образом, значение n для МПУ конкретного вертикального емкостного 
аппарата однозначно определяется соотношениями (5), (6), и задача оптимизации 
ПМП в этом аппарате сводится к поиску значений Dm, Нm и hhm, которым соот-
ветствует поле скоростей перемешиваемой жидкости, минимизирующее значение 
критерия (4). 
 

Выбор вида полинома регрессии 
 

Вычисление значения критерия (4), соответствующего комбинации фиксиро-
ванных значений параметров Dm, Нm и hhm, осуществляется по результатам расче-
та поля скоростей в объеме жидкости, перемешиваемой в исследуемом аппарате, 
то есть затраты времени на решение задачи оптимизации зависят в основном от 
необходимого количества расчетов поля скоростей. Минимальное число комби-
наций фиксированных значений Dm, Нm и hhm, при которых необходимо рассчи-
тывать значения ,li riu u , i = 1, ..., z, формируется согласно методике планирования 
многофакторного вычислительного эксперимента [6]. Критерий (4) аппроксими-
руется степенным полиномом, результатом поиска минимума которого являются 
оптимальные значения параметров МПУ. 

Предлагаемый алгоритм решения задачи предусматривает реализацию трех-
факторного эксперимента: фиксирование значений Dm, Нm и hhm на уровнях, со-
ответствующих матрице плана эксперимента. Результирующая зависимость зна-
чения KSVS от значений факторов должна иметь выраженный минимум, поэтому 
выбран план эксперимента второго порядка – ОЦКП [6]. 

При трех факторах ОЦКП предусматривает проведение 15 экспериментов на 
пяти уровнях варьирования каждого фактора, то есть формируемый полином рег-
рессии может включать до 14 слагаемых. Это может быть как полный полином 
регрессии второго порядка, содержащий 11 слагаемых, так и неполный полином 
регрессии третьего порядка, дополнительно включающий слагаемые с факторами 
в третьей степени.  

Процедуру обоснования выбора вида полинома регрессии рассмотрим на 
примере решения задач оптимизации для аппарата, который использовался для 
проведения лабораторного эксперимента: задач поиска оптимальных параметров 
конструкции МПУ, оснащаемого двухлопастной, турбинной открытой и трехло-
пастной мешалками. Натуральные значения факторов Dm, Нm и hhm, соответст-
вующие их кодированным значениям, предусмотренным матрицей ОЦКП, а так-
же значения дополнительных параметров конструкций мешалок были зафиксиро-
ваны согласно рекомендациям [4].  
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где yi, yri – значение критерия (4) в i-й точке плана, полученное в результате ре-
шения математической модели ПМП, и значение полинома регрессии в той же 
точке; ymax, ymin – максимальное и минимальное значения yri в точках плана;   
Nп – число точек плана. 

Если при выбранном порядке полинома регрессии значение ε > 5 %, реко-
мендуется переход к формированию полинома более высокого порядка. 

В таблице 2 представлены графические интерпретации относительной ошиб-
ки (7) полиномов регрессии: полных полиномов второй и неполных полиномов 
третьей степени. Формально сформированные полиномы регрессии второго по-
рядка для всех типов мешалок приемлемы (относительная ошибка меньше 5 %), 
однако максимальные отклонения значений yri от yi весьма существенны.  
Также следует отметить совпадение оптимальных значений ширины лопасти  
и высоты установки всех трех мешалок с границами интервалов варьирования их 
кодированных значений. Относительные ошибки полиномов третьего порядка 
существенно меньше и, кроме того, оптимальные значения параметров Dm, Нm  
и hhm входят в интервалы их варьирования, выбранные для проведения вычисли-
тельных экспериментов [2]. Следовательно, неполные полиномы регрессии треть-
ей степени более приемлемы для аппроксимации критерия (4). 

 
Комплекс программ оптимизации ПМП 

 

В основе комплекса программ, реализующего представленную методику оп-
тимизации ПМП гомогенной жидкости в вертикальном емкостном аппарате [7], 
лежит набор библиотек, предоставляющих инструменты для решения систем 
дифференциальных уравнений в частных производных (как стационарных, так  
и нестационарных). В программе конечно-элементного анализа OpenFOAM 
большинство дифференциальных и тензорных операторов в программном коде  
(до трансляции в исполняемый файл) может быть представлено в удобочитаемой 
форме, а метод дискретизации и решения для каждого оператора выбран пользо-
вателем в процессе расчета. Таким образом, полностью разделяются формирова-
ние расчетной сетки КЭ (метод дискретизации), дискретизация основных уравне-
ний и их решение. 

Комплекс программ включает модули: 
1 – ввода данных; 
2 – формирования матрицы ОЦКП;  
3 – построения конечно-элементной модели аппарата и МПУ;  
4 – решения математической модели; 
5 – определения параметров МПУ и вывода результатов (рис. 2). 
В качестве основного языка программирования выбран Python, к преимуще-

ствам которого можно отнести [8]: 
– использование высокоуровневых типов данных, причем их динамическая 

типизация короче, чем в программах на других языках того же уровня; 
– поддержка общих методологий программирования: проектирования струк-

тур данных, объектно-ориентированного программирования;  
– большой набор структур данных, внутренних функций, улучшенная обра-

ботка пространства имен;  
– использование модулей и итераторов, поддержка множественного наследо-

вания; 
– поддержка основных структур графического интерфейса пользователя (GUI); 
– самый короткий код среди однотипных языков программирования.  
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Таблица 4  
 

Результаты оптимизации ПМП в промышленном аппарате 
 

Значения параметров конструкции МПУ 

Диаметр мешалки Высота установки  
мешалки Ширина лопасти Высота лопасти 

Результаты оптимизации 

Dm = 0,95Dr hhm = 0,05Dm Нm = 0,15Dm Вm = 0,85Dm 

Рекомендации [4] для якорных мешалок 

Dm / Dr = 0,7…0,9 hhm ≥ 0,5(Dr – Dm) Нm / Dm = 0,1 Вm / Dm = 0,7 
 

Для подтверждения эффективности модифицированной конструкции и изме-
ненной высоты расположения мешалки над днищем аппарата была реализована 
обработка нескольких пробных партий пасты фталоцианина меди. По ее результа-
там сделаны следующие выводы: 

– образование отложений на стенках корпуса аппарата практически отсутст-
вует; 

– необходимую продолжительность стадии репульпации можно сократить  
с 20 до 18 ч, а поскольку она является лимитирующей по времени в процессе про-
изводства фталоцианина меди, то мощность производства можно увеличить  
с 1188 до 1320 т/год; 

– мощность привода МПУ можно уменьшить на 16 %.  
 

Заключение 
 

Затраты мощности на перемешивание гомогенной жидкости в вертикальной 
емкости с МПУ рассчитываются по значениям осредненного крутящего момента, 
необходимого для преодоления сил внутреннего трения в перемешиваемой жид-
кости, найденным по результатам решения математической модели ПМП. 

Адекватность разработанной математической модели ПМП подтверждена 
результатами эксперимента на промышленном аппарате, установленном в одном 
из цехов АО «Пигмент» (Тамбов): отклонение значений затрат мощности на пе-
ремешивание, рассчитанных по результатам решения модели и результатам изме-
рений напряжения питания и силы тока, потребляемого электродвигателем при-
вода мешалки при перемешивании гомогенной жидкости и вращении мешалки  
в пустом аппарате, не превышает 3 %. 

Значение частоты вращения вала МПУ конкретного вертикального емкост-
ного аппарата однозначно определяется конструкцией мешалки и свойствами пе-
ремешиваемой среды, а также значением затрат мощности на перемешивание, то 
есть задача оптимизации ПМП сводится к поиску значений диаметра и ширины 
лопасти мешалки, высоты ее расположения над днищем аппарата, которым соот-
ветствует поле скоростей перемешиваемой жидкости, минимизирующее диспер-
сию длины вектора ее скорости. 

Выбор вида полинома регрессии, аппроксимирующего зависимость диспер-
сии длины вектора скорости перемешиваемой жидкости от параметров конструк-
ции МПУ, осуществляется не только по значению относительной ошибки поли-
нома регрессии, но и по максимальным отклонениям значений критерия опти-
мальности ПМП от значений полинома регрессии в тех же точках плана вычисли-
тельного эксперимента. 
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Разработанный комплекс программ оптимизации ПМП включает модули 
ввода данных и формирования матрицы ОЦКП, написанные на языке Python, по-
строения конечно-элементной модели аппарата и МПУ, разработанного в среде 
параметрического 3D-моделирования ZenCAD, решения математической модели 
ПМП, разработанного в среде конечно-элементного моделирования OpenFOAM, 
определения параметров МПУ и вывода результатов, написанного на языке 
Python. Сравнение результатов применения комплекса с результатами примене-
ния популярных систем инженерного анализа ANSYS Fluent и COMSOL 
Multiphysicsс подтвердило его эффективность. 

В результате применения комплекса программ для решения задачи оптими-
зации параметров МПУ промышленного аппарата АО «Пигмент» (Тамбов) пред-
ложены модификации его конструкции, позволившие устранить образование от-
ложений на стенках аппарата, сократить на 10 % продолжительность стадии ре-
пульпации пасты фталоцианина меди, уменьшить на 16 % затраты мощности на 
перемешивание. 
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Abstract: The article considers the structure and functions of a software package 

implementing a methodology for optimizing the mechanical mixing process (MMP) of  
a homogeneous liquid in a vertical tank apparatus. The package includes:  
a mathematical model of the MMP developed on the basis of the Reynolds-averaged 
Navier-Stokes equations and the RNG k–ε turbulence model; a formulation of the 
problem of optimizing the design parameters and operating mode of mechanical mixing 
devices (MMD) from the point of view of the dispersion of the velocity vector of the 
mixed liquid; an algorithm for solving the optimization problem developed based on the 
theory of a multifactorial computational experiment. The article presents the results  
of a comparison of the effectiveness of the developed software package with popular 
engineering analysis systems, and its application to modify the MMD parameters of the 
industrial apparatus of Pigment JSC (Tambov). 
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Softwarekomplex zur Optimierung des Prozesses des mechanischen  

Mischens von Flüssigkeiten in einem vertikalen Behälter 
 

Zusammenfassung: Es sind die Struktur und Funktionen eines 
Softwarekomplexes betrachtet, der die Methodik zur Optimierung des Prozesses der 
mechanischen Durchmischung (Mischprozess) einer homogenen Flüssigkeit in einem 
vertikalen Behälterapparat realisiert. Dieser umfasst: ein mathematisches Modell des 
Mischprozesses, das auf den Reynolds-gemittelten Navier-Stokes-Gleichungen und dem 
RNG k–ε Turbulenzmodell basiert; die Formulierung der Aufgabe zur Optimierung der 
Konstruktionsparameter und des Betriebsregimes mechanischer Rührgeräte (MRG) aus 
der Perspektive der Dispersion des Geschwindigkeitsvektors der durchmischten 
Flüssigkeit; einen Lösungsalgorithmus für das Optimierungsproblem, der auf der 
Theorie des multifaktoriellen computergestützten Experiments entwickelt worden ist. 
Die Ergebnisse des Vergleichs der Effizienz des entwickelten Softwarekomplexes mit 
beliebten Systemen der Ingenieuranalyse sowie dessen Anwendung zur Modifizierung 
der Parameter von MRG in der Industrieanlage der AO „Pigment“ (Tambow) sind 
präsentiert. 

 
 
Ensemble de programmes d'optimisation du processus d'agitation 

mécanique du liquide dans la cuve verticale 
 

Résumé: Sont examinées la structure et les fonctions de l'ensemble de 
programmes qui régissent la méthode d'optimisation du processus du mélange 
mécanique (PMM) d'un liquide homogène dans un dispositif capacitif vertical, qui 
comprend: un modèle mathématique de PMM développé à la base des équations de 
Navier-Stokes, moyennes de Reynolds, et RNG k–ε du modèle de turbulence;  
le problème d'optimisation des paramètres de la conception et du mode du 
fonctionnement des dispositifs du mélange mécanique (DMM) du point de vue de la 
dispersion du vecteur de la vitesse du liquide mélangé; l'algorithme de la résolution des 
problèmes d'optimisation développé à la base de la théorie de l'expérience de calcul 
multifactorielle. Sont présentés les résultats de la comparaison de l'efficacité de 
l'ensemble des programmes mis au point avec les systèmes populaires d'analyse en 
ligne, leur utilisation pour la modification des paramètres de DMM de l'appareil 
industriel de la société anonyme de type ouvert «Pigment» (Tambov). 
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