EXPONENTIAL METHODS OF SUMMATION
OF THE FOURIER SERIES

A. D. Nakhman¹, B. P. Osilenker²

Departments: “Applied Mathematics and Mechanics”, TSTU (1);
“Higher Mathematics”, Moscow State University of Civil Engineering, Moscow (2);
alextmb@mail.ru

Key words and phrases: convergence almost everywhere; convex; estimates of
L^p-norms; piecewise-convex sequences.

Abstract: We consider the semi-continuous methods
\(\Lambda = \{ \lambda_k(h), k = 0,1,\ldots; h > 0 \} \) of summation of Fourier series and conjugated Fourier series, generated by exponential functions \(\lambda(x,h) = \exp(-hu^\alpha(x)), \alpha > 0 \). The estimates of \(L^p \)-norms of the corresponding maximal operators are obtained. As consequence, we get some results about exponential method of summation of the Fourier series almost everywhere and in \(L^p \)-metric.

Introduction

Consider \(f = f(x) \in L([-\pi, \pi]) \), and let
\[
U_h(f) = U(f, x; \lambda, h) = \sum_{k=-\infty}^{\infty} \lambda_k(h) c_k(f) \exp(ikx),
\]
\[
\bar{U}_h(f) = \bar{U}(f, x; \lambda, h) = -i \sum_{k=-\infty}^{\infty} (\text{sgn} k) \lambda_k(h) c_k(f) \exp(ikx)
\]
be the set of a linear means of Fourier series and conjugate Fourier series respectively.

In various questions of the analysis there is a problem of behaviour of (1) and (2) when \(h \to +0 \). Here \(c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \exp(-ikt) dt \), \(k = 0, \pm 1, \pm 2, \ldots \) are complex Fourier coefficients,
\[
\Lambda = \{ \lambda_k(h), k = 0,1,\ldots \}
\]
is infinite sequence defined by the values of parameter \(h > 0 \). This sequence defines so-called semi-continuous method of summation. The regularity conditions of such methods will be the following \([1, p. 79]\):
\[
\lambda_0(h) = 1, \quad \lim_{h \to 0} \lambda_k(h) = 1, \quad k = 0,1,\ldots;
\]
\[
\sup_{h>0} \sum_{k=0}^{\infty} | \Delta \lambda_k(h) | < \infty.
\]
The similar problems for (1) have been studied by L. I. Bausov [2] in case of discrete \(h \).

We consider the semi-continuous methods of summation corresponding, basically, to the case of

\[\lambda_0(h) = 1, \quad \lambda_k(h) = \lambda(x, h) |_{x = k}, \quad k = 1, 2, \ldots, \]

where

\[\lambda(x, h) = \exp(-h\varphi(x)), \quad (6) \]

and function \(\varphi(x) \in C^2(0, +\infty) \). Note that if \(\lambda_k(h) = \exp(-hk) \) we get Poisson-Abel means [3, vol. 1, p. 160 – 165].

Let \(\| f \|_p = \left(\frac{1}{p} \int_\pi^\pi |f(x)|^p \, dx \right)^{1/p} \) be a norm in Lebesgue space \(L^p (\rho > 0; \ L = L^1; \ \| f \| = \| f \|_1) \) and

\[\tilde{f}(x) = \frac{1}{2} \lim_{\varepsilon \to 0} \int_{\varepsilon \leq |t| \leq \pi} \frac{f(x + t) \cot \frac{t}{2}}{2} \, dt \]

be a conjugate function; this function exists almost everywhere for each \(f \in L \) [3, vol. 1, p. 402]. Define

\[U_*(f) = U_*(f, x; \lambda) = \sup_{h > 0} \{ U_0(f, x; \lambda, h) \}; \quad \tilde{U}_*(f) = \tilde{U}_*(f, x; \lambda) = \sup_{h > 0} \{ \tilde{U}(f, x; \lambda, h) \}. \]

Estimates of \(L^p \)-norms

The sequence (3) is called a convex (concave), if

\[\Delta_k^2 = \Delta(\Delta_k(h)) = \lambda_k(h) - 2\lambda_{k+1}(h) + \lambda_{k+2}(h) \geq 0 \quad (\Delta_k^2 \leq 0), \quad k = 0, 1, \ldots \]

The sequence (3) is piecewise-convex, if \(\Delta_k^2 \) changes sign a finite number of times, \(k = 0, 1, \ldots \)

Theorem 1. If the sequence (3) is a convex (a concave) and

\[\lambda_0(h) \ln k = O(1), \quad k \to \infty, \quad (7) \]

for each \(h > 0 \) then the estimates

\[\| U_*(f) \|_p + \| \tilde{U}_*(f) \|_p \leq C_{p, \lambda} \| (f) \|_p, \quad p > 1; \quad (8) \]

\[\| U_*(f) \|_p + \| \tilde{U}_*(f) \|_p \leq C_{\lambda} (1 + \| f (|n| + |f|) \|); \quad (9) \]

\[\| U_*(f) \|_p + \| \tilde{U}_*(f) \|_p \leq C_{p, \lambda} \| (f) \|_p, \quad 0 < p < 1 \]

(10)

hold.

Here \(C \) will represent a constant, though not necessarily one such constant.

The estimates (8) – (10) remain valid, if a piecewise-convex sequence (3) satisfies to the condition (7) and there is constant \(C = C_{\lambda} \), such that

\[|\lambda_k(h)| + k |\Delta_k(h)| \leq C_{\lambda} \]

(11)

for all \(h > 0, \ k = 1, 2, \ldots \).

Proofs of both statements will be based on the Abel transform of sums (1), (2) and on the estimates of Fejér means [3, vol. 1, p. 148] by maximal operators

\[f^* = f^*(x) = \sup_{h > 0} \frac{1}{h} \int_{x-h}^{x+h} f(t) \, dt \quad \text{and} \quad f^* = f^*(x) = \sup_{h > 0} \int_{h \leq |t| \leq \pi} \frac{f(x + t)}{2 \tg \frac{t}{2}} \, dt. \]
Thus the inequalities (8) – (10) occur when \(\|U_*(f)\|_p + \|\tilde{U}_*(f)\|_p \) is replaced by \(\|f^*\|_p + \|\tilde{f}^*\|_p \), [1, vol. 1, p. 58–59, 404].

Theorem 2. Let the sequence (3) be a convex (a concave) and at every \(h > 0 \) satisfies the conditions (7) and (4). Then relations:

\[
\lim_{h \to 0} U_h(f) = f; \quad (12)
\]

\[
\lim_{h \to 0} \tilde{U}_h(f) = \tilde{f}; \quad (13)
\]

hold almost everywhere (a.e.) for every \(f \in L \) and in the metrics \(L^p \) for every \(p > 1 \).

The statements remain valid for every piecewise-convex sequence (3), satisfying to conditions (4), (7), (11).

Besides, under the formulated conditions the relation (12) holds in each point of a continuity of function \(f \). The relation (12) holds uniformly over \(x \) for everyone continuous \(f \). Last statement does not extend, generally speaking, on a case (13).

Auxiliary statements

Lemma. If a piecewise-convex sequence (3) satisfies to conditions (7) then the following relations hold:

\[
U_*(f, x; \lambda) \leq C f^*(x) \sum_{k=0}^{\infty} (k+1) |\Delta^2 \lambda_k(h)|; \quad (14)
\]

\[
\tilde{U}_*(f, x; \lambda) \leq C \left(f^*(x) + \tilde{f}^*(x) \right) \sum_{k=0}^{\infty} (k+1) |\Delta^2 \lambda_k(h)| \quad (15)
\]

Proof. We shall prove (15); the relation (14) one can deduce exactly in a similar way. According to the integrated form of Fourier coefficients and Abel transform we obtain

\[
\tilde{U}_h(f) = \tilde{U}(f, x; \lambda, h) = \lim_{N \to +\infty} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left\{ \sum_{k=1}^{N} \lambda_k(h) \sin k(x-t) \right\} dt =
\]

\[
= \frac{1}{\pi} \lim_{N \to +\infty} \left\{ \lambda_N(h) \int_{-\pi}^{\pi} f(x+t) \tilde{D}_N(t) dt + N \Delta \lambda_{N-1}(h) \int_{-\pi}^{\pi} f(x+t) \tilde{F}_{N-1}(t) dt + \right.
\]

\[
+ \sum_{k=0}^{N-2} (k+1) \Delta^2 \lambda_k(h) \int_{-\pi}^{\pi} f(x+t) \tilde{F}_k(t) dt \right\}. \quad (16)
\]

Here

\[
\tilde{D}_k(t) = \sum_{\nu=1}^{k} \sin \nu t = \frac{1}{2t} \left[\frac{\cos \left(\frac{k+1}{2} t \right)}{2 \sin \frac{1}{2} t} - \frac{\cos \left(\frac{k+1}{2} t \right)}{2 \sin \frac{1}{2} t} \right]; \quad \tilde{F}_k(t) = \frac{1}{k+1} \sum_{\nu=0}^{k} \tilde{D}_\nu(t) = \frac{1}{2t} \left[\frac{1}{2} - \frac{1}{2} \right] - \frac{\tilde{F}_k(t)}{2}.
\]

are conjugate Dirichlet and Fejer kernels, respectively, and

\[
\tilde{F}_k(t) = \frac{\cos (k+1) t}{2(k+1) \sin ^2 \frac{1}{2} t}.
\]

Further, we shall establish the following estimates for the integrals containing in the right part of (16):
\[
\int_{-\pi}^{\pi} f(x+t) \tilde{D}_k(t) \, dt \leq C f^{*}(x) \ln k, \quad k = 2, 3, \ldots; \quad (17)
\]
\[
\int_{-\pi}^{\pi} f(x+t) \tilde{F}_k(t) \, dt \leq C \left(f^{*}(x) + \tilde{f}^{*}(x) \right), \quad k = 0, 1, \ldots \quad (18)
\]

For this purpose we shall use the obvious inequalities:
\[
|\tilde{D}_k(t)| + |\tilde{F}_k(t)| \leq C(k+1), \quad 0 \leq t \leq \pi, \quad k = 0, 1, \ldots; \quad (19)
\]
\[
|\tilde{D}_k(t)| \leq C \frac{1}{|t|}, \quad 0 < |t| \leq \pi, \quad k = 0, 1, \ldots; \quad (20)
\]
\[
|\tilde{F}_k(t)| \leq C \frac{1}{(k+1)t^2}, \quad 0 < |t| \leq \pi, \quad k = 0, 1, \ldots \quad (21)
\]

and choose a natural number \(S = S(k), \) \(k = 0, 1, \ldots, \) such that \(\frac{2S-1}{k+1} \leq \pi < \frac{2S}{k+1}. \) According to (19), (20), we have
\[
\int_{-\pi}^{\pi} f(x+t) \tilde{D}_k(t) \, dt \leq C \left((k+1) \int_{|t| \leq \frac{1}{k+1}} |f(x+t)| \, dt + \sum_{j=0}^{S} \frac{k+1}{2j+1} \int_{\frac{2j}{k+1} \leq |t| \leq \frac{2j}{k+1}} |f(x+t)| \, dt \right) \leq
\]
\[
C(1 + 2S) f^{*}(x) \leq Cf^{*}(x) \ln k, \quad k = 2, 3, \ldots
\]

Further, we shall prove (18). In view of relations (19) and (21) we obtain
\[
\int_{-\pi}^{\pi} f(x+t) \tilde{F}_k(t) \, dt \leq C \left((k+1) \int_{|t| \leq \frac{1}{k+1}} |f(x+t)| \, dt + \int_{\frac{1}{k+1} \leq |t| \leq \frac{\pi}{2}} \frac{f(x+t)}{2 \tan \frac{t}{2}} \, dt \right)
\]
\[
+ \sum_{j=1}^{S} \frac{k+1}{(2j+1)^2} \int_{\frac{2j-1}{k+1} \leq |t| \leq \frac{2j}{k+1}} |f(x+t)| \, dt \leq C (f^{*}(x) + \tilde{f}^{*}(x)).
\]

The statement (15) is now a direct consequence of equality (16), estimates (17), (18), relations (7) and \(\Delta \lambda_k(h) = O \left(\frac{1}{k} \right), \) \(k \to \infty. \) The last relation is valid [3, vol. 1, p. 156] for any convex or piecewise-convex sequence.

Proof of the theorems 1, 2

We consider a case of a piecewise-convex sequence \(\Lambda. \) Then \(\Delta^2 \lambda_k(h) \) keeps the sign for \(m \leq k \leq n, \) where \(m \) and \(n \) are some natural numbers. By Abel summation formula we obtain
\[
\sum_{k=m}^{n} (k+1)^2 \Delta^2 \lambda_k(h) = \lambda_{m+1}(h) - \lambda_{n+1}(h) + (m+1)\Delta \lambda_m(h) - (n+1)\Delta \lambda_{n+1}(h).
\]
(22)
Hence, \(\sum_{k=0}^{\infty} (k+1)\left| \Delta^2 \lambda_k(h) \right| \) is equal to finite number of sums, each of which looks like (22); if \(n \to +\infty \) then \(\lambda_n^{h+1}(h) + (n+1)\Delta \lambda_{n+1}(h) \to 0 \) [3, vol. 1, p. 155–156]. Now, using relations (11), (14), (15), and (22) we obtain the second statement of the \textit{theorem 1}; the first statement can be received by similar arguments.

The statements of the \textit{theorem 2} (convergence a.e. and in metrics \(L^p \)) follow from (22) and (11) by standard arguments [3, vol. 2, p. 464–465]. It is necessary to notice, that the conditions of regularity of \(\Lambda \)-method are valid; the validity of (5) follows [4, p. 748] from (22) and (11).

The convergence (12) in points of continuity and uniformly over \(x \) follows from (14) and Banach-Shteinhaus theorem. To use this theorem it is enough obtain the boundedness of eigenvalues constants of summation method. In turn, it will be follow from (14), (22), (11) for \(f \equiv 1 \) if to notice that \(F_k(t) \geq 0 \).

The last statement cannot be extended to a case (13) because the conjugate function \(\bar{f} \) can lose a continuity in points of continuity \(f \) [5, p. 554].

\textit{Convex and piecewise-convex exponential summarising sequences}

We shall address to consideration of a case (6). It be required to us

\[
\lambda'_x(x,h) = -h \exp(-h \phi(x)) \phi'(x), \quad \lambda''_{xx}(x,h) = h \exp(-h \phi(x)) (h \phi'(x))^2 - \phi''(x).
\] (23)

Let restrict oneself, basically, to consideration of functions

\[
\phi(x) = u^\alpha(x), \quad \alpha > 0.
\]

\textit{Theorem 3.} Let \(u \in C^2(0, +\infty) \), \(u > 0 \), \(u'' < 0 \) (\(x \in (0, +\infty) \)), \(0 < \alpha \leq 1 \),

\[
\lambda(x,h) = \exp(-hu^\alpha(x)), \quad (24)
\]

and

\[
\exp(-hu^\alpha(x)) \ln x = O(1), \quad x \to +\infty
\]

(25)

for every \(h > 0 \). Then the estimates (8) – (10) are valid and the relations (12), (13) hold a.e. for every \(f \in L \) and in the metrics \(L^p \), \(p > 1 \). These assertions remain valid if

\[
V = V(x) = \alpha h u^\alpha(u')^2 - (\alpha - 1)(u')^2 - uu''', \quad \alpha > 0
\]

(26)

has on \((0, +\infty) \) finite number of zeros, the conditions (25) is satisfied and there is constant \(C = C_{u,\alpha} \) such that for all \(h > 0 \), \(x \in (1, +\infty) \)

\[
xh \exp(-hu^\alpha(x))u^{\alpha-1}(x)u' \leq C_{u,\alpha}.
\]

(27)

Proof. We shall apply the results of \textit{theorems 1, 2}. The condition (7) is satisfied by (25). It is remain to prove that (24) is convex for \(0 < \alpha \leq 1 \). According to (24), (23), (26) we have

\[
\lambda''_{xx}(x,h) = \alpha h \exp(-hu^\alpha(x))u^{\alpha-2}(x)V(x).
\]

(28)

Then \(\lambda''_{xx}(x,h) < 0 \) for \(u''(x) < 0 \) and \(0 < \alpha \leq 1 \) as it was required to obtain.

Further we shall notice that the formulated condition on function \(V(x) \) in (26) provides a piecewise-convexity of sequence (6), defined by (24). Really, let, for example, \(V(x) \) is a function of constant sign for \(m \leq x \leq n+2 \) \((m \) and \(n \) are some
non-negative integers). We shall apply to \(\lambda(x,h) \) (as functions of \(x \)) the Lagrange theorem twice (on \([k, k+1]\) and on \([k + \theta_1, k + 2]\) respectively):

\[
\Delta \lambda_k (h) = -\lambda'_x (k + \theta_1, h);
\]
\[
\Delta^2 \lambda_k (h) = (1 - \theta_1)\lambda''_{xx} (k + \theta_1 + \theta_2, h), \tag{29}
\]
where \(\theta_1 = \theta_1(k), \theta_2 = \theta_2(k), \theta_1, \theta_2 \in (0,1) \). Let \(\theta = \theta_1 + \theta_2 \). If \(m \leq k \leq n \), then \(m < k + \theta < n + 2 \), such that \(\Delta^2 \lambda_k (h) \) is sequence of constant sign by (29).

Since a number of intervals (with the integer ends) on which \(V(x) \) is a function of constant sign, is finite, then \(\Delta^2 \lambda_k (h) \) has finite number of changes of a sign. It remain to note the validity of (11), if condition (28) holds.

Theorem 3 is proved.

Examples

1. Let \(u(x) = \ln x \), then

\[
\lambda_0(h) = 1, \quad \lambda(x, h) = \exp(-h \ln^\alpha x), \quad x > 0, \quad \alpha > 0. \tag{30}
\]

It is evidently that (25) holds. For \(0 < \alpha \leq 1 \) the sequence (6), defined by (30), is convex.

If \(\alpha > 1 \), then function (26) vanishes once; hence, the summarising sequence is piece-convex. It is remain to note that

\[
\left(h \ln^\alpha x \right) \exp(-h \ln^\alpha x) \leq C_\alpha \text{ at all } \alpha > 1 \text{ and } x > 2.
\]

So, the statements of *Theorem 3* hold for a case (30) at all \(\alpha > 0 \). In particular (\(\alpha = 1 \))

\[
c_0(f) + \sum_{1 \leq |k| < \infty} \frac{1}{k^\alpha} c_k (f) \exp(ikx) \to f(x) \text{ and } -i \sum_{k=\infty}^{\infty} \left(\text{sgn } k \right) \frac{1}{k^\alpha} c_k (f) \exp(ikx) \to \tilde{f}(x)
\]
a.e. for everyone \(f \in L \) and in metrics \(L^p, \quad p > 1 \).

2. Let \(u(x) = \ln x \), then

\[
\lambda_0(h) = 1, \quad \lambda(x, h) = \exp(-h x^\alpha), \quad x > 0, \quad \alpha > 0. \tag{31}
\]

It is evidently that (25) holds. For \(0 < \alpha \leq 1 \) [6] the sequence (6), defined by (31), is convex. If \(\alpha > 1 \), then function (26) vanishes once; hence, the summarising sequence is piece-convex. It is remain to note that

\[
h \exp(-h x^\alpha) x^\alpha \leq C_\alpha \text{ at all } \alpha > 1 \text{ and } x > 0.
\]

So, the statements of *Theorem 3* hold for a case (31) at all \(\alpha > 0 \). In particular (\(\alpha = 1, h = \ln \frac{1}{r}, \quad 0 < r < 1 \)) we obtain the convergence of Poisson-Abel means

\[
U_r(f, x) = \sum_{k=-\infty}^{\infty} r^{|k|} c_k (f) \exp(ikx) \text{ and } \tilde{U}_r(f, x) = -i \sum_{k=-\infty}^{\infty} \left(\text{sgn } k \right) r^{|k|} c_k (f) \exp(ikx).
\]
3. Consider a method of summation defined by the function
\[\lambda(x, h) = \exp(-h P_n(x)), \quad x > 0, \] (32)
where \(P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0, \quad a = a_n > 0 \) is any polynomial, \(n = 1, 2, \ldots \). By relation (23) \(\lambda''_{xx} (h, x) = \exp(-h P_n(x)) h \Psi(h, x) \), where
\[\Psi(h, x) = h (P'_n(x))^2 - P''_n(x). \] (33)
The right hand part of (33) is a polynomial of degree of \((2n - 2)\), so it has no more \((2n - 2)\) changes of signs. Hence, the condition of piecewise-convexity of sequence (6) is satisfied.

Verify a condition (11). The production \(k |\lambda_{\lambda_k} (h)| \) is a value of function
\[\pi(x) = \frac{xh P'_n(x)}{\exp(h P_n(x))} = \frac{h P_n(x)}{\exp(h P_n(x))} \frac{Q_n(x)}{P_n(x)}, \]
where
\[Q_n(x) = x P'_n(x). \] (34)
Then \(|\pi(x)|\) is bounded, since \(\frac{h P_n(x)}{\exp(h P_n(x))} \) looks like \(t \frac{1}{\exp t}, \quad t > 0. \)

So, the statements of theorem 3 hold for a case (32) at all \(n = 1, 2, \ldots \).

Operator of the translation type

1. Let \(f \in L \) and
\[\tau_h(f) : f(x) \mapsto f(x + h) \sim \sum_{k=-\infty}^{\infty} c_k(f) \exp(ikh) \exp(ikx) \quad (h > 0) \]
is a translation operator. Using the integral form of Fourier coefficients \(c_k(f) \) we have
\[f(x + h) \sim \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \frac{1}{2} + \sum_{k=1}^{\infty} \cos k h \cos k(x-t) \right) dt - \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left(\sum_{k=1}^{\infty} \sin k h \sin k(x-t) \right) dt \]. (35)

By analogy with (35) we will consider two summarising sequences \(\Lambda, \tilde{\Lambda} \) and operator of translation type
\[\tau_h(f) = \tau_h(f; \Lambda; \tilde{\Lambda}; x) : f(x) \mapsto U(f, x; \Lambda, \tilde{\Lambda}, h) - \tilde{U}(f, x; \Lambda, h); \] (36)
denote \(\tau_* (f) = \tau_* (f; \Lambda, \tilde{\Lambda}; x) = \sup_{h > 0} \tau_h(f; \Lambda, \tilde{\Lambda}; x) \).

Applying to (36) theorems 1, 2, we obtain the following statements.

Theorem 4. If the elements of each sequence \(\Lambda \) and \(\tilde{\Lambda} \) satisfy to condition (7) and both sequences have certain character of convexity, then the
estimates (8) – (10) hold with replacement \(\| U_* (f) \|_\rho + \| \tilde{U}_* (f) \|_\rho \) on \(\| \tau_* (f) \|_\rho \). The statement remains valid for any piecewise-convex sequences \(\Lambda \) and \(\tilde{\Lambda} \) which elements satisfy to conditions of a kind (7), (11).

If the condition (4) is besides, satisfied, then the relation...
\[
\lim_{h \to 0} \tau_h(f) = f - \tilde{f}
\]
holds almost everywhere for everyone \(f \in L \) and in metrics \(L^p \) at any \(p > 1 \).

2. The result of theorem 4 can be applied to the operator \(\tau_h(f) \)
\[
f(x) \mapsto \tau_h(f; u, \alpha; \omega, \beta; x) = \sum_{k=-\infty}^{\infty} \exp(-hu^{\alpha}(|k|))c_k(f)\exp(ikx) + \\
+ i \sum_{k=-\infty}^{\infty} (\text{sgn } k) \exp\left(-\frac{1}{h}\omega^{\beta}(|k|)\right)c_k(f)\exp(ikx).
\]
Let \(u(x) \) be one of the following functions: \(u(x) = \ln x \), or \(u(x) = x \), and \(\omega(x) = \ln x \) or \(\omega(x) = x \). Then for every \(\alpha > 0 \), \(\beta > 0 \) the relation
\[
\lim_{h \to 0} \tau_h(f; u, \alpha; \omega, \beta; x) = f(x)
\]
holds a.e. for every \(f \in L \) and in the metrics \(L^p \) (\(p > 1 \)).

References

Список литературы

Exponentialmethoden der Summierung der Reihen von Fourier

Zusammenfassung: Es werden die halbununterbrochenen Methoden \(\Lambda = \{ \lambda_k(h), k = 0,1,\ldots; h > 0 \} \) der Reihen von Fourier und der verknüpften Reihen von Fourier, die von den Exponentialfunktionen \(\lambda(x, h) = \exp(-hu^\alpha(x)), \alpha > 0 \) erzeugt wurden. Es sind die Einschätzungen von \(L^p \)-Norm der entsprechenden maximalen Operatoren erhalten. Als Untersuchung werden einige Ergebnisse über die Exponentialmethoden der Summierung der Reihen von Fourier fast überall und in der Metrik \(L^p \) gebracht.

Méthodes exponentielles de la summation des séries Fourier

Résumé: Sont examinées les méthodes semi-continues \(\Lambda = \{ \lambda_k(h), k = 0,1,\ldots; h > 0 \} \) de la summation des séries de Fourier et des séries conjuguées générées par les fonctions exponentielles \(\lambda(x, h) = \exp(-hu^\alpha(x)), \alpha > 0 \). Sont reçues les estimations \(L^p \)-normes des opérateurs correspondants. En qualité de conséquence sont cités les résultats sur les méthodes exponentielles de la summation des séries Fourier presque partout et dans la métrique \(L^p \).

Рецензент: Кузиков Геннадий Михайлович – доктор физико-математических наук, профессор, заведующий кафедрой «Прикладная математика и механика», ФГБОУ ВПО «ТГТУ».